
This cheatsheet aims to succinctly cover the most important aspects of F# 8.0.

The Microsoft F# Documentation is complete and authoritative and has received
a lot of love in recent years; it’s well worth the time investment to read. Only
after you’ve got the lowdown here of course ;)

If you have any comments, corrections, or suggested additions, please open an
issue or send a pull request to https://github.com/fsprojects/fsharp-cheatsheet.
Questions are best addressed via the F# slack or the F# discord.

Contents
• Comments
• Strings
• Basic Types and Literals
• Functions
• Collections

– Lists
– Arrays
– Sequences

• Data Types
– Tuples
– Records
– Anonymous Records
– Discriminated Unions

• Pattern Matching
• Exceptions
• Classes and Inheritance
• Interfaces and Object Expressions
• Active Patterns
• Code Organization
• Compiler Directives

Comments
Block comments are placed between (* and *). Line comments start from //
and continue until the end of the line.

(* This is block comment *)

// And this is line comment

XML doc comments come after /// allowing us to use XML tags to generate
documentation.

/// The `let` keyword defines an (immutable) value
let result = 1 + 1 = 2

1

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
https://learn.microsoft.com/en-us/dotnet/fsharp/
https://github.com/fsprojects/fsharp-cheatsheet
https://fsharp.org/guides/slack
https://discord.me/fsharp

Strings
F# string type is an alias for System.String type.

// Create a string using string concatenation
let hello = "Hello" + " World"

Use verbatim strings preceded by @ symbol to avoid escaping control characters
(except escaping " by "").

let verbatimXml = @"<book title=""Paradise Lost"">"

We don’t even have to escape " with triple-quoted strings.

let tripleXml = """<book title="Paradise Lost">"""

Backslash strings indent string contents by stripping leading spaces.

let poem =
"The lesser world was daubed\n\
By a colorist of modest skill\n\
A master limned you in the finest inks\n\
And with a fresh-cut quill."

String Slicing is supported by using [start..end] syntax.

let str = "Hello World"
let firstWord = str[0..4] // "Hello"
let lastWord = str[6..] // "World"

String Interpolation is supported by prefixing the string with $ symbol. All of
these will output "Hello" \ World!:

let expr = "Hello"
printfn " \"%s\" \\ World!" expr
printfn $" \"{expr}\" \\ World!"
printfn $" \"%s{expr}\" \\ World!" // using a format specifier
printfn $@" ""{expr}"" \ World!"
printfn $@" ""%s{expr}"" \ World!"
printf $@" ""%s{expr}"" \ World!" // no newline

See Strings (MS Learn) for more on escape characters, byte arrays, and format
specifiers.

Basic Types and Literals
Use the let keyword to define values. Values are immutable by default, but can
be modified if specified with the mutable keyword.

let myStringValue = "my string"
let myIntValue = 10
let myExplicitlyTypedIntValue: int = 10
let mutable myMutableInt = 10

2

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/strings

myMutableInt <- 11 // use <- arrow to assign a new value

Integer Prefixes for hexadecimal, octal, or binary

let numbers = (0x9F, 0o77, 0b1010) // (159, 63, 10)

Literal Type Suffixes for integers, floats, decimals, and ascii arrays

let (sbyte, byte) = (55y, 55uy) // 8-bit integer

let (short, ushort) = (50s, 50us) // 16-bit integer

let (int, uint) = (50, 50u) // 32-bit integer

let (long, ulong) = (50L, 50uL) // 64-bit integer

let bigInt = 9999999999999I // System.Numerics.BigInteger

let float = 50.0f // signed 32-bit float

let double = 50.0 // signed 64-bit float

let scientific = 2.3E+32 // signed 64-bit float

let decimal = 50.0m // signed 128-bit decimal

let byte = 'a'B // ascii character; 97uy

let byteArray = "text"B // ascii string; [|116uy; 101uy; 120uy; 116uy|]

Primes (or a tick ' at the end of a label name) are idiomatic to functional
languages and are included in F#. They are part of the identifier’s name and
simply indicate to the developer a variation of an existing value or function. For
example:

let x = 5
let x' = x + 1
let x'' = x' + 1

See Literals (MS Learn) for complete reference.

Functions
Use the let keyword to define named functions.

let add n1 n2 = n1 + n2
let subtract n1 n2 = n1 - n2
let negate num = -1 * num

3

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/literals

let print num = printfn $"The number is: {num}"

Pipe and Composition Operators

Pipe operator |> is used to chain functions and arguments together.

let addTwoSubtractTwoNegateAndPrint num =
num |> add 2 |> subtract 2 |> negate |> print

Composition operator >> is used to compose functions:

let addTwoSubtractTwoNegateAndPrint' =
add 2 >> subtract 2 >> negate >> print

Caution: The output is the last argument to the next function.

// `addTwoSubtractTwoNegateAndPrint 10` becomes:
10
|> add 2 // 2 + 10 = 12
|> subtract 2 // 2 - 12 = -10
|> negate // -1 * -10 = 10
|> print // "The number is 10"

unit Type

The unit type is a type that indicates the absence of a specific value. It is
represented by (). The most common use is when you have a function that
receives no parameters, but you need it to evaluate on every call:

let appendSomeTextToFile () = // without unit, only one line would be appended to the file
System.IO.File.AppendAllText($"{__SOURCE_DIRECTORY__}/file.txt", "New line")

Signatures and Explicit Typing

Function signatures are useful for quickly learning the input and output of
functions. The last type is the return type and all preceding types are the input
types.

int -> string // this defines a function that receives an integer; returns a string
int -> int -> string // two integer inputs; returns a string
unit -> string // unit; returns a string
string -> unit // accepts a string; no return
(int * string) -> string -> string // a tuple of int and string, and a string inputs; returns a string

Most of the time, the compiler can determine the type of a parameter, but there
are cases may you wish to be explicit or the compiler needs a hand. Here is a
function with a signature string -> char -> int and the input and return
types are explicit:

let countWordsStartingWithLetter (theString: string) (theLetter: char) : int =
theString.Split ' '

4

|> Seq.where (fun (word: string) -> word.StartsWith theLetter) // explicit typing in a lambda
|> Seq.length

Examples of functions that take unit as arguments and return different Collection
types.

let getList (): int list = ... // unit -> int list
let getArray (): int[] = ...
let getSeq (): seq<int> = ...

A complex declaration with an Anonymous Record:

let anonRecordFunc (record: {| Count: int; LeftAndRight: bigint * bigint |}) =
...

Recursive

The rec keyword is used together with the let keyword to define a recursive
function:

let rec fact x =
if x < 1 then 1
else x * fact (x - 1)

Mutually recursive functions (those functions which call each other) are indicated
by and keyword:

let rec even x =
if x = 0 then true
else odd (x - 1)

and odd x =
if x = 0 then false
else even (x - 1)

Statically Resolved Type Parameters

A statically resolved type parameter is a type parameter that is replaced with an
actual type at compile time instead of at run time. They are primarily useful in
conjunction with member constraints.

let inline add x y = x + y
let integerAdd = add 1 2
let floatAdd = add 1.0f 2.0f // without `inline` on `add` function, this would cause a type error

type RequestA = { Id: string; StringValue: string }
type RequestB = { Id: string; IntValue: int }

let requestA: RequestA = { Id = "A"; StringValue = "Value" }

5

let requestB: RequestB = { Id = "B"; IntValue = 42 }

let inline getId<'T when 'T : (member Id: string)> (x: 'T) = x.Id

let idA = getId requestA // "A"
let idB = getId requestB // "B"

See Statically Resolved Type Parameters (MS Learn) and Constraints (MS
Learn) for more examples.

Collections
Lists

A list is an immutable collection of elements of the same type. Implemented
internally as a linked list.

// Create
let list1 = ["a"; "b"]
let list2 =

[1
2]

let list3 = "c" :: list1 // prepending; ["c"; "a"; "b"]
let list4 = list1 @ list3 // concat; ["a"; "b"; "c"; "a"; "b"]
let list5 = [1..2..9] // start..increment..last; [1; 3; 5; 7; 9]

// Slicing is inclusive
let firstTwo = list5[0..1] // [1; 3]

// Pattern matching
match myList with
| [] -> ... // empty list
| [3] -> ... // a single item, which is '3'
| [_; 4] -> ... // two items, second item is '4'
| head :: tail -> ... // cons pattern; matches non-empty. `head` is the first item, `tail` is the rest

// Tail-recursion with a list, using cons pattern
let sumEachItem (myList:int list) =

match myList with
| [] -> 0
| head :: tail -> head + sumEachItem tail

See the List Module for built-in functions.

Arrays

Arrays are fixed-size, zero-based, collections of consecutive data elements main-
tained as one block of memory. They are mutable; individual elements can be

6

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/statically-resolved-type-parameters
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/constraints
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/generics/constraints
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-listmodule.html

changed.

// Create
let array1 = [| "a"; "b"; "c" |]
let array2 =

[| 1
2 |]

let array3 = [| 1..2..9 |] // start..increment..last; [| 1; 3; 5; 7; 9 |]

// Indexed access
let first = array1[0] // "a"

// Slicing is inclusive; [| "a"; "b" |]
let firstTwo = array1[0..1]

// Assignment using `<-`
array1[1] <- "d" // [| "a"; "d"; "c" |]

// Pattern matching
match myArray with
| [||] -> ... // match an empty array
| [| 3 |] -> ... // match array with single 3 item
| [| _; 4 |] -> ... // match array with 2 items, second item = 4

See the Array Module for built-in functions.

Sequences

A sequence is a logical series of elements of the same type. seq<'t> is an alias
for System.Collections.Generic.IEnumerable<'t>.

// Create
let seq1 = { 1; 2 }
let seq2 = seq {

1
2 }

let seq3 = seq { 1..2..9 } // start..increment..last; 1,3,5,7,9

See the Seq Module for built-in functions.

Collection comprehension

• Computed expressions with ->. Results in 1, 3, 5, 7, 9

let listComp = [for i in 0..4 -> 2 * i + 1]
let arrayComp = [| for i in 0..4 -> 2 * i + 1 |]
let seqComp = seq { for i in 0..4 -> 2 * i + 1 }

7

https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-arraymodule.html
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://fsharp.github.io/fsharp-core-docs/reference/fsharp-collections-seqmodule.html

• Using computed expressions with yield and yield!. (yield is optional
in a do, but is being used explicitly here):

let comprehendedList = [// [1;3;5;7;9]
for i in 0..4 do

yield 2 * i + 1
]

let comprehendedArray = [| // [| 1;3;5;7;9;1;3;5;7;9 |]
for i in 0..4 do

yield 2 * i + 1
yield! listWithYield
|]

let comprehendedSequence = seq { // seq { 1;3;5;7;9;1;3;5;7;9;.... }
while true do

yield! listWithYield
}

Data Types
Tuples

A tuple is a grouping of unnamed but ordered values, possibly of different types:

// Construction
let numberAndWord = (1, "Hello")
let numberAndWordAndNow = (1, "Hello", System.DateTime.Now)

// Deconstruction
let (number, word) = numberAndWord
let (_, _, now) = numberAndWordAndNow

// fst and snd functions for two-item tuples:
let number = fst numberAndWord
let word = snd numberAndWord

// Pattern matching
let printNumberAndWord numberAndWord =

match numberAndWord with
| (1, word) -> printfn $"One: %s{word}"
| (2, word) -> printfn $"Two: %s{word}"
| (_, word) -> printfn $"Number: %s{word}"

// Function parameter deconstruction
let printNumberAndWord' (number, word) = printfn $"%d{number}: %s{word}"

In C#, if a method has an out parameter (e.g. DateTime.TryParse) the out
result will be part of a tuple.

8

https://learn.microsoft.com/en-us/dotnet/api/system.datetime.tryparse

let (success, outParsedDateTime) = System.DateTime.TryParse("2001/02/06")

See Tuples (MS Learn) for learn more.

Records

Records represent aggregates of named values. They are sealed classes with
extra toppings: default immutability, structural equality, and pattern matching
support.

// Declare
type Person = { Name: string; Age: int }
type Car =

{ Make: string
Model: string
Year: int }

// Create
let paul = { Name = "Paul"; Age = 28 }

// Copy and Update
let paulsTwin = { paul with Name = "Jim" }

// Built-in equality
let evilPaul = { Name = "Paul"; Age = 28 }
paul = evilPaul // true

// Pattern matching
let isPaul person =

match person with
| { Name = "Paul" } -> true
| _ -> false

See Records (MS Learn) to learn more; including struct-based records.

Anonymous Records

Anonymous Records represent aggregates of named values, but do not need
declaring before use.

// Create
let anonRecord1 = {| Name = "Don Syme"; Language = "F#"; Age = 999 |}

// Copy and Update
let anonRecord2 = {| anonRecord1 with Name = "Mads Torgersen"; Language = "C#" |}

let getCircleStats (radius: float) =
{| Radius = radius

9

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/tuples
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/records

Diameter = radius * 2.0
Area = System.Math.PI * (radius ** 2.0)
Circumference = 2.0 * System.Math.PI * radius |}

// Signature
let printCircleStats (circle: {| Radius: float; Area: float; Circumference: float; Diameter: float |}) =

printfn $"Circle with R=%f{circle.Radius}; D=%f{circle.Diameter}; A=%f{circle.Area}; C=%f{circle.Circumference}"

let cc = getCircleStats 2.0
printCircleStats cc

See Anonymous Records (MS Learn) to learn more; including struct-based
anonymous records.

Discriminated Unions

Discriminated unions (DU) provide support for values that can be one of a
number of named cases, each possibly with different values and types.

// Declaration
type Interaction =

| Keyboard of char
| KeyboardWithModifier of char * modifier: System.ConsoleModifiers
| MouseClick of countOfClicks: int

// Create
let interaction1 = MouseClick 1
let interaction2 = MouseClick (countOfClicks = 2)
let interaction3 = KeyboardWithModifier ('c', System.ConsoleModifiers.Control)

// Pattern matching
match interaction3 with
| Keyboard chr -> $"Character: {chr}"
| KeyboardWithModifier (chr, modifier) -> $"Character: {modifier}+{chr}"
| MouseClick (countOfClicks = 1) -> "Click"
| MouseClick (countOfClicks = x) -> $"Clicked: {x}"

Generics

type Tree<'T> =
| Node of Tree<'T> * 'T * Tree<'T>
| Leaf

let rec depth =
match depth with
| Node (l, _, r) -> 1 + max (depth l) (depth r)
| Leaf -> 0

10

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/anonymous-records

F# Core has built-in discriminated unions for error handling, e.g., option and
Result.

let optionPatternMatch input =
match input with
| Some value -> printfn $"input is %d{value}"
| None -> printfn "input is missing"

let resultPatternMatch input =
match input with
| Ok value -> $"Input: %d{value}"
| Error value -> $"Error: %d{value}"

Single-case discriminated unions are often used to create type-safe abstractions
with pattern matching support:

type OrderId = Order of string

// Create a DU value
let orderId = Order "12"

// Use pattern matching to deconstruct single-case DU
let (Order id) = orderId // id = "12"

See Discriminated Unions to learn more.

Pattern Matching
Patterns are a core concept that makes the F# language and other MLs very
powerful. They are found in let bindings, match expressions, lambda expressions,
and exceptions.

The matches are evaluated top-to-bottom, left-to-right; and the first one to
match is selected.

Examples of pattern matching in Collections and Data Types can be found in
their corresponding sections. Here are some additional patterns:

match intValue with
| 0 -> "Zero" // constant pattern
| 1 | 2 -> "One or Two" // OR pattern with constants
| x -> $"Something else: {x}" // variable pattern; assign value to x

match tupleValue with
| (_ ,3) & (x, y) -> $"{x}, 3" // AND pattern with a constant and variable; matches 3 and assign 3 to x
| _ -> "Wildcard" // underscore matches anything

11

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/results
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions

when Guard clauses

In order to match sophisticated inputs, one can use when to create filters, or
guards, on patterns:

match num with
| 0 -> 0
| x when x < 0 -> -1
| x -> 1

Pattern matching function

The let..match..with statement can be simplified using just the function
statement:

let filterNumbers num =
match num with

| 1 | 2 | 3 -> printfn "Found 1, 2, or 3!"
| a -> printfn "%d" a

let filterNumbers' = // the paramater and `match num with` are combined
function | 1 | 2 | 3 -> printfn "Found 1, 2, or 3!"

| a -> printfn "%d" a

See Pattern Matching (MS Learn) to learn more.

Exceptions
Try..With

An illustrative example with: custom F# exception creation, all exception
aliases, raise() usage, and an exhaustive demonstration of the exception handler
patterns:

open System
exception MyException of int * string // (1)
let guard = true

try
failwith "Message" // throws a System.Exception (aka exn)
nullArg "ArgumentName" // throws a System.ArgumentNullException
invalidArg "ArgumentName" "Message" // throws a System.ArgumentException
invalidOp "Message" // throws a System.InvalidOperation

raise(NotImplementedException("Message")) // throws a .NET exception (2)
raise(MyException(0, "Message")) // throws an F# exception (2)

true // (3)
with

12

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching

| :? ArgumentNullException -> printfn "NullException"; false // (3)
| :? ArgumentException as ex -> printfn $"{ex.Message}"; false // (4)
| :? InvalidOperationException as ex when guard -> printfn $"{ex.Message}"; reraise() // (5,6)
| MyException(num, str) when guard -> printfn $"{num}, {str}"; false // (5)
| MyException(num, str) -> printfn $"{num}, {str}"; reraise() // (6)
| ex when guard -> printfn $"{ex.Message}"; false
| ex -> printfn $"{ex.Message}"; false

(1) define your own F# exception types with exception, a new type that will
inherit from System.Exception;

(2) use raise() to throw an F# or .NET exception;
(3) the entire try..with expression must evaluate to the same type,

in this example: bool; (4)ArgumentNullException inherits from
ArgumentException, so ArgumentException must follow after;

(4) support for when guards;
(5) use reraise() to re-throw an exception; works with both .NET and F#

exceptions

The difference between F# and .NET exceptions is how they are created and
how they can be handled.

Try..Finally

The try..finally expression enables you to execute clean-up code even if a
block of code throws an exception. Here’s an example that also defines custom
exceptions.

exception InnerError of string
exception OuterError of string

let handleErrors x y =
try

try
if x = y then raise (InnerError("inner"))
else raise (OuterError("outer"))

with
| InnerError str -> printfn "Error1 %s" str

finally
printfn "Always print this."

Note that finally does not follow with. try..with and try..finally are
separate expressions.

Classes and Inheritance
This example is a basic class with (1) local let bindings, (2) properties, (3)
methods, and (4) static members.

type Vector(x: float, y: float) =

13

let mag = sqrt(x * x + y * y) // (1)
member _.X = x // (2)
member _.Y = y
member _.Mag = mag
member _.Scale(s) = // (3)

Vector(x * s, y * s)
static member (+) (a : Vector, b : Vector) = // (4)

Vector(a.X + b.X, a.Y + b.Y)

Call a base class from a derived one.

type Animal() =
member _.Rest() = ()

type Dog() =
inherit Animal()
member _.Run() =

base.Rest()

Upcasting is denoted by :> operator.

let dog = Dog()
let animal = dog :> Animal

Dynamic downcasting (:?>) might throw an InvalidCastException if the cast
doesn’t succeed at runtime.

let shouldBeADog = animal :?> Dog

Interfaces and Object Expressions
Declare IVector interface and implement it in Vector.

type IVector =
abstract Scale : float -> IVector

type Vector(x, y) =
interface IVector with

member _.Scale(s) =
Vector(x * s, y * s) :> IVector

member _.X = x
member _.Y = y

Another way of implementing interfaces is to use object expressions.

type ICustomer =
abstract Name : string
abstract Age : int

let createCustomer name age =

14

{ new ICustomer with
member __.Name = name
member __.Age = age }

Active Patterns
Single-case active patterns

// Basic
let (|EmailDomain|) email =

let match' = Regex.Match(email, "@(.*)$")
if match'.Success
then match'.Groups[1].ToString()
else ""

let (EmailDomain emailDomain) = "yennefer@aretuza.org" // emailDomain = 'aretuza.org'

// As Parameters
open System.Numerics
let (|Real|) (x: Complex) =

(x.Real, x.Imaginary)
let addReal (Real (real1, _)) (Real (real2, _)) = // conversion done in the parameters

real1 + real2
let addRealOut = addReal Complex.ImaginaryOne Complex.ImaginaryOne

// Parameterized
let (|Default|) onNone value =

match value with
| None -> onNone
| Some e -> e

let (Default "random citizen" name) = None // name = "random citizen"
let (Default "random citizen" name) = Some "Steve" // name = "Steve"

Single-case active patterns can be thought of as a simple way to convert data to
a new form.

Complete active patterns

let (|Even|Odd|) i =
if i % 2 = 0 then Even else Odd

let testNumber i =
match i with
| Even -> printfn "%d is even" i
| Odd -> printfn "%d is odd" i

let (|Phone|Email|) (s:string) =
if s.Contains '@' then Email $"Email: {s}" else Phone $"Phone: {s}"

15

match "yennefer@aretuza.org" with // output: "Email: yennefer@aretuza.org"
| Email email -> printfn $"{email}"
| Phone phone -> printfn $"{phone}"

Partial active patterns

let (|DivisibleBy|_|) by n =
if n % by = 0 then Some DivisibleBy else None

let fizzBuzz = function
| DivisibleBy 3 & DivisibleBy 5 -> "FizzBuzz"
| DivisibleBy 3 -> "Fizz"
| DivisibleBy 5 -> "Buzz"
| i -> string i

Partial active patterns share the syntax of parameterized patterns but their
active recognizers accept only one argument.

Code Organization
Modules

Modules are key building blocks for grouping related code; they can contain
types, let bindings, or (nested) sub modules. Identifiers within modules can
be referenced using dot notation, or you can bring them into scope via the open
keyword. Illustrative-only example:

module Money =
type CardInfo =

{ number: string
expiration: int * int }

type Payment =
| Card of CardInfo
| Cash of int

module Functions =
let validCard (cardNumber: string) =

cardNumber.Length = 16 && (cardNumber[0], ['3';'4';'5';'6']) ||> List.contains

If there is only one module in a file, the module name can be declared at the top,
and all code constructs within the file will be included in the modules definition
(no indentation required).

module Functions // notice there is no '=' when at the top of a file

let sumOfSquares n = seq {1..n} |> Seq.sumBy (fun x -> x * x) // Functions.sumOfSquares

16

Namespaces

Namespaces are simply dotted names that prefix type and module declarations
to allow for hierarchical scoping. The first namespace directives must be placed
at the top of the file. Subsequent namespace directives either: (a) create a
sub-namespace; or (b) create a new namespace.

namespace MyNamespace

module MyModule = // MyNamspace.MyModule
let myLet = ... // MyNamspace.MyModule.myLet

namespace MyNamespace.SubNamespace

namespace MyNewNamespace // a new namespace

A top-level module’s namespace can be specified via a dotted prefix:

module MyNamespace.SubNamespace.Functions

Open and AutoOpen

The open keyword can be used on module, namespace, and type.

module Groceries =
type Fruit =

| Apple
| Banana

let fruit1 = Groceries.Banana
open Groceries // module
let fruit2 = Apple

open System.Diagnostics // namespace
let stopwatch = Stopwatch.StartNew() // Stopwatch is accessible

open type System.Text.RegularExpressions.Regex // type
let isHttp url = IsMatch("^https?:", url) // Regex.IsMatch directly accessible

Available to module declarations only, is the AutoOpen attribute, which alleviates
the need for an open.

[<AutoOpen>]
module Groceries =

type Fruit =
| Apple

17

| Banana

let fruit = Banana

However, AutoOpen should be used cautiously. When an open or AutoOpen
is used, all declarations in the containing element will be brought into scope.
This can lead to shadowing; where the last named declaration replaces all prior
identically-named declarations. There is no error - or even a warning - in
F#, when shadowing occurs. A coding convention (MS Learn) exists for open
statements to avoid pitfalls; AutoOpen would sidestep this.

Accessibility Modifiers

F# supports public, private (limiting access to its containing type or module)
and internal (limiting access to its containing assembly). They can be applied
to module, let, member, type, new (MS Learn), and val (MS Learn).

With the exception of let bindings in a class type, everything defaults to
public.

Element Example with Modifier
Module module internal MyModule =
Module .. let let private value =
Record type internal MyRecord = { id: int }
Record ctor type MyRecord = private { id: int }
Discriminated Union type internal MyDiscUni = A \| B
Discriminated Union ctor type MyDiscUni = private A \| B
Class type internal MyClass() =
Class ctor type MyClass private () =
Class Additional ctor internal new() = MyClass("defaultValue")
Class .. let Always private. Cannot be overridden
type .. member member private _.TypeMember =
type .. val val internal explicitInt : int

Smart Constructors

Making a primary constructor (ctor) private or internal is a common con-
vention for ensuring value integrity; otherwise known as “making illegal states
unrepresentable” (YouTube:Effective ML).

Example of Single-case Discriminated Union with a private constructor that
constrains a quantity between 0 and 100:

type UnitQuantity =
private UnitQuantity of int

module UnitQuantity = // common idiom: type companion module

18

https://en.wikipedia.org/wiki/Variable_shadowing
https://learn.microsoft.com/en-us/dotnet/fsharp/style-guide/conventions#sort-open-statements-topologically
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/classes#constructors
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/members/explicit-fields-the-val-keyword
https://youtu.be/-J8YyfrSwTk?si=ml3AWro6jG77F0YW&t=1080
https://youtu.be/-J8YyfrSwTk?si=ml3AWro6jG77F0YW&t=1080

let tryCreate qty =
if qty < 1 || qty > 100
then None
else Some (UnitQuantity qty)

let value (UnitQuantity uQty) = uQty
let zero = UnitQuantity 0

...
let unitQtyOpt = UnitQuantity.tryCreate 5

let validQty =
unitQtyOpt
|> Option.defaultValue UnitQuantity.zero

Recursive Reference

F#’s type inference and name resolution runs in file and line order. By default,
any forward references are considered errors. This default provides a single
benefit, which can be hard to appreciate initially: you never need to look beyond
the current file for a dependency. In general this also nudges toward more careful
design and organisation of codebases, which results in cleaner, maintainable
code. However, in rare cases forward referencing might be needed. To do this
we have rec for module and namespace; and and for type and let (Recursive
Functions) functions.

module rec CarModule

exception OutOfGasException of Car // Car not defined yet; would be an error

type Car =
{ make: string; model: string; hasGas: bool }
member self.Drive destination =

if not self.hasGas
then raise (OutOfGasException self)
else ...

type Person =
{ Name: string; Address: Address }

and Address =
{ Line1: string; Line2: string; Occupant: Person }

See Namespaces (MS Learn) and Modules (MS Learn) to learn more.

Compiler Directives
Load another F# source file into FSI.

19

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/namespaces
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/modules

#load "../lib/StringParsing.fs"

Reference a .NET assembly (/ symbol is recommended for Mono compatibility).
Reference a .NET assembly:

#r "../lib/FSharp.Markdown.dll"

Reference a nuget package

#r "nuget:Serilog.Sinks.Console" // latest production release
#r "nuget:FSharp.Data, 6.3.0" // specific version
#r "nuget:Equinox, *-*" // latest version, including `-alpha`, `-rc` version etc

Include a directory in assembly search paths.

#I "../lib"
#r "FSharp.Markdown.dll"

Other important directives are conditional execution in FSI (INTERACTIVE) and
querying current directory (__SOURCE_DIRECTORY__).

#if INTERACTIVE
let path = __SOURCE_DIRECTORY__ + "../lib"
#else
let path = "../../../lib"
#endif

20

	Contents
	Comments
	Strings
	Basic Types and Literals
	Functions
	Pipe and Composition Operators
	unit Type
	Signatures and Explicit Typing
	Recursive
	Statically Resolved Type Parameters

	Collections
	Lists
	Arrays
	Sequences
	Collection comprehension

	Data Types
	Tuples
	Records
	Anonymous Records
	Discriminated Unions

	Pattern Matching
	when Guard clauses
	Pattern matching function

	Exceptions
	Try..With
	Try..Finally

	Classes and Inheritance
	Interfaces and Object Expressions
	Active Patterns
	Single-case active patterns
	Complete active patterns
	Partial active patterns

	Code Organization
	Modules
	Namespaces
	Open and AutoOpen
	Accessibility Modifiers
	Smart Constructors
	Recursive Reference

	Compiler Directives

